Unsupervised object-centric video
generation and decomposition in 3D

Generative models

Classic

VAE [Kingma, ICLR 2014]
GAN [Goodfellow, NIPS 2014]

@ — D—> @ - single opaque latent — not interpretable

- only support generation - no inference
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AIR [Eslami, NIPS 2016]
SCALOR [Jiang, ICLR 2020]
SQAIR [Kosiorek, NeurlPS 2018]
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@ SPACE [Lin, ICLR 2020]
>

« structured latents - interpretable and compositional

- if learn an object appearance once, can model at any location
...i.e. appearance and (2D) location are disentangled

 support inference of scene structure: segmentation, etc.
...and this is learnt without supervision, just maximising the

pixel likelihood

Existing 2D object-centric models
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2D layers
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« 2D sprites, with xy positions, scales and depth ordering

- rendering by spatial transformer + alpha blending

« do not learn a scene-level prior (e.g. collision avoidance)

- work well on videos that consist of independently-moving
2D sprites with slowly-changing appearance

SCALOR [Jiang, ICLR 2020]

« SILOT [Crawford, AAAI 2020]
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Our model
Key idea

« the world is built out of 3D objects (not 2D sprites!)

...s0: model video as view observed by a camera moving through a
scene consisting of multiple 3D objects, and a 3D background

camera moves through scene

‘7—/_ capturing frames

@ objects = voxels, or textured
“amer; / mesh (we evaluate both);

i — static or moving

Probabilistic model

background = textured mesh

!JI

I / —> position x G objects
II — 5 rotation differentiable _)®
o velocity renderer
input —> reconstructed
—| encoder »@9 Q
enerated
Ll o __|, appearance _)Q voxels A J gfram -
latent © embedding or mesh
embedding
\ —> background shape & texture

camera
parameters

- have a 3D grid of G candidate objects; each may be present or not

- single Gaussian latent z embeds all information about the scene
« includes object/background appearances and motion
- allows learning inter-object dependencies, e.g. avoid collisions

- decoders map z to per-object...
- appearance codes, which are decoded independently to explicit
3D appearances (voxel RGBAs / mesh vertex offsets & texture)
« 3D locations, rotations, and velocities
« binary presence indicator

- differentiably render each object, then composite together
« camera parameters (extrinsic + intrinsic) treated as known

- trained like a VAE
- add an encoder that maps a video to its latent z
« maximise ELBO (variational bound on likelihood)
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Results more at https://www.pmh47.net/o3v/

Rooms  °inspired by GON [Eslami, Science 2018]

« 3-5 static objects, random colours
Inference (unsupervised scene decomposition)
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Ours (voxel objects) FVD = 3418 KID =0.108
Ours (mesh objects) FVD= 383.1 KID=0.106
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- KID = 0.083 (single frames only!)
FVD=1421.6 KID=0.148

o created using CARLA [Dosovitskiy, CoRL 2017]
« 1-3 cars driving along a straight road

Traffic

Inference (unsupervised scene decomposition)
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