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Abstract—Reasoning about the structure and motion of novel
object classes is a core ability in human cognition, crucial for
manipulating objects and predicting their possible motion. We
present a method that learns to infer the skeleton structure of a
novel articulated object from a single image, in terms of joints and
rigid links connecting them. The model learns without supervision
from a dataset of objects having diverse structures, in different
poses and states of articulation. To achieve this, it is trained to
explain the differences between pairs of images in terms of a
latent skeleton that defines how to transform one into the other.
Experiments on several datasets show that our model predicts
joint locations significantly more accurately than prior works
on unsupervised keypoint discovery; moreover, unlike existing
methods, it can predict varying numbers of joints depending on
the observed object. It also successfully predicts the connections
between joints, even for structures not seen during training.

I. INTRODUCTION

Learning and predicting the structure of articulated objects
from 2D images is a routine task for humans, yet it remains
challenging in computer vision. While there has been great
progress in predicting keypoints for certain object categories
such as the human body [1]–[4], successful methods rely
heavily on large, labeled datasets of objects. They assume these
datasets contain only one object class, meaning the desired set
of keypoints (e.g. knee, elbow, wrist) is known and fixed a
priori. For other forms of articulated object such as animals
and robots, learning object structure remains an open challenge,
due to a lack of annotated datasets, and presence of diverse
skeleton structures.

To address the shortage of annotated data, recent works
have proposed unsupervised object keypoint discovery methods.
These either learn to match object parts that are equivariant to
geometric transformations [5]–[7], or encode and reconstruct
images via structural representations incorporating keypoint
locations and appearance [8]–[11]. However, these methods
do not learn semantically meaningful keypoints—which for an
articulated object typically correspond to joints in its skeleton
structure. To learn those, existing methods must still rely on
either (i) a post-processing step with at least a few human-
annotated keypoints, or (ii) a dataset of unpaired poses to which
model predictions are aligned [12].

In this work, we develop a model for unsupervised keypoint
prediction, that explicitly reasons about skeleton structure, and
places keypoints at joint locations (Sec. III). Thus, the keypoints
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Fig. 1. Our goal is to infer the skeleton structure of an articulated object
from a single image—the number of joints, their positions and connectivity.
Our method learns from a dataset of objects of diverse structures, using only
pairs of images, without manual supervision.

are semantically meaningful. However, this is challenging, as
the skeleton structure of the object shown in an image may be
unknown a priori, and may even vary between instances of
the same class (a possibility not considered in earlier works).
In addition to joint locations, we therefore predict the links
in the skeleton structure itself—i.e. the connectivity between
joints (Fig. 1). This information is also valuable as it allows
estimating the kinematics of an unfamiliar object—and thus
how to manipulate it physically or reason about occluded parts.

Our model is trained without any manual supervision. Instead,
it learns from unannotated pairs of images, where the two
images in each pair depict the same object instance in different
articulation states and/or poses (such pairs may easily be
obtained from videos). The model first extracts a dense set
of points belonging to the foreground object in each image,
by requiring that the points from one image may be used
to reconstruct the object as seen in the other image. From
just one image, it then predicts a common skeleton structure
whose joints are a subset of those foreground points, and whose
links are optimised to best explain the remaining foreground
points in both images—ensuring that every foreground point is
near some link of the skeleton, and conversely that there are
foreground points placed all along each link.

We evaluate the joint locations and skeleton structures
predicted by our model on six diverse datasets (Sec. IV). We
show qualitatively and quantitatively that, in contrast to prior
unsupervised works, the keypoints predicted by our approach



are more physically meaningful and have stable identity across
frames, as they correspond to joints in the skeleton structure.
Moreover, our model successfully predicts structures for unseen
objects, and even for objects having structures that were never
seen during training.

To summarize, our contributions are:
� the �rst unsupervised method that can infer the skeleton

structure of a novel articulated object from a single image
� the �rst method for unsupervised keypoint discovery that

explicitly reasons about the skeleton of the object to
improve the semantic meaningfulness of keypoints

� the �rst such method that predicts avarying number of
keypoints depending on the object shown

� a novel approach to �nding a set of foreground points
with temporal correspondences, by physically transporting
foreground pixels from their location in the source to that
in the target frame.

II. RELATED WORK

a) Unsupervised keypoint detection:Automatic learning
of object structure is an extensively studied problem (e.g.
[13]–[15]), especially in facial landmark detection [16], [17]
and human body pose estimation [18]. Recent unsupervised
techniques [19], [20] learn to predict relative transformations
between two images of an object. However, these techniques
do not learn invariant descriptors and object parts explicitly.
[5], [6] learn to explain image parts with descriptors that are
invariant to geometric transformations such as thin-plate splines.
[7] extends [6] with cross-instance generalisation ability by
encouraging transitivity between the embeddings of different
object instances. [8] learns to predict keypoint locations from a
dataset of image pairs, by requiring that one image in a pair can
be reconstructed from the other via a latent representation that
factors the appearance and keypoint locations. [21] improves
[8] by encouraging the keypoints to lie only on the estimated
foreground region. [22] avoids the need for multiple views of
each instance, instead learning from many images of a single
object class, using a clustering-based approach. [12] extends
[8] by estimating a skeleton for each image and associating
the discovered keypoints with its joints. Though related to
ours, this method requires an empirical skeleton prior (skeleton
images obtained from real datasets). In addition, it is limited to
learn one object morphology (e.g.only faces), while ours can
learn from multiple of them. [11] uses a keypoint bottleneck to
model appearance changes between two images by replacing
features corresponding to the keypoints in a source image with
the ones from the target image. Finally [23] and [24] instead
discover keypoints from sets of 3D shapes—respectively point-
clouds and meshes. These afford richer information, but are
much more expensive to obtain than 2D images.

b) Unsupervised part detection:Several other works aim
to discover objectpartswithout supervision, but without linking
those parts into a higher-level structure. [25] learns to predict
part masks from pairs of frames showing the same articulated
instance, by noting constraints on how the shape and appearance
of parts should transform between frames. [26] instead relies on

video input, and learns an explicit part-decomposed appearance
model; it does not support inference on unseen videos. [27]
goes further and estimates a structure matrix describing which
parts move together; however, they only predict one matrix for
an entire dataset (containing just one object class), instead of
predicting structure per-input.

c) Unsupervised structure prediction:Most related to
ours, [28] predicts keypoints using [11], and a matrix indicating
which of these are `causally linked' to infer object dynamics
and the future state. This model associates pairs of parts that
are predictive of each other, hence it does not incorporate any
geometric information like ours. Indeed, the trajectories of
two physically-connected joints are oftenlesscorrelated than
those of two non-connected joints (e.g. the motion of the right
foot is highly predictive of the left). In addition, it assumes
access to ground-truth actions (e.g. locations and strengths of
applied forces), which convey strong side information about
the keypoint locations, and relies on the keypoints of [11]
which are typically more error-prone. We compare our method
to [28] in Sec. IV.

III. M ETHOD

Our goal is to learn a function that predicts the skeleton
structure—i.e. joint locations and connectivity—of a novel
articulated object from a single imagex. We split this prediction
into two stages. First, a neural network� (x) outputs a dense
set of points covering the foreground object shown inx. Then,
a second neural network (x ; � (x)) takes as input the image
and foreground points, and outputs the skeleton structure—with
the predicted joint locations being a subset of the foreground
points. We train this model on a dataset of unannotated image
pairs, each showing an articulated object in two different poses.
For each pair ofsourceand target images, we require that
the foreground points from the source image can reconstruct
the target image using the shape of the target object but the
appearance of source object (Sec.III-A ). We simultaneously
require that the skeleton predicted by from the source image
explains the foreground points in both images (Sec. III-B).

A. Predicting foreground points

The point extractor� takes as input a single RGB image
x 2 < H � W � 3 of sizeH � W.1 It returns the pixel locations
of P points covering the foreground object; the output of�
should be pose- and viewpoint-invariant,i.e. when� is applied
to two images of the same object in different poses, thepth

point still corresponds to the same physical location on the
object (e.g.point p is on the nose in both images). However,
this is not a sparse keypoint representation. We represent the
position of each point� (x)jp 2 f 1; : : : ; H g � f 1; : : : ; Wg as
a one-hot categorical variable over allH � W pixels, indicating
the pixel coordinate of the point in the image. Hence,� (x)
outputs a tensor of sizeP � H � W, with each of theP
slices corresponding to one foreground point, and interpreted
as logits of a single categorical variable overH � W possible

1We implement� with a U-net architecture [29]; architectural details for
all networks are in the supplementary



Fig. 2. Our model is trained on pairs of images,sourceandtarget. It has three encoder networks:� predicts a list foreground points from each image; 
predicts the skeleton structure from the source image, by selecting certain foreground points to use as joints, and specifying which are connected;B predicts
the background from the target image. The model is trained for two objectives. Aneural point transporter(NPT) aims to reconstruct the target image (blue
dashed arrow) using the foreground point appearances from the source image, their locations in the target image, and a predicted background. Meanwhile, the
skeleton predicted by must be consistent with the foreground points in both images (red dotted arrows).

spatial coordinates. To allow training by gradient descent, we
relax the categorical variables to continuous Gumbel-Softmax
variables [30], [31]. This representation for point positions is
advantageous over using anxy coordinate (e.g.given by the
expectation of a spatial softmax [32]) used in prior works [8],
[9], [11], [12], [33]–[35]. This is because our approach yields
informative non-zero gradients througheverypossible location,
not just with respect to the mean location; this discourages
local optima where points become stuck between two possible
locations. In sectionIV-C, we include an ablation study showing
that using [32] reduces performance signi�cantly.

a) Losses:To train � without supervision, we require
that the point locations in the target image, combined with
the point appearances from the source image, can be used
to accurately reconstruct the target image. Speci�cally, we
introduce a novelneural point transporter(NPT ), which
reconstructsx target from x source by transportingthe appear-
ance at each foreground point in the source to its corre-
sponding location in the target, and compositing these over
a background. We �rst infer the backgroundbtarget from
the target image itself using an auxiliary networkB , i.e.
btarget = B (x target ). Then, for each pointp, we smooth its
location map� (x source )jp by convolving with a3� 3 Gaussian
�lter to give ~� source

p . Next, we take a weighted average of pixels
in the source image according to the smoothed location map,i.e.
cp =

� P
! 2 
 x source (! )~� source

p (! )
�

=
P

! 2 
 ~� source
p (! ) where

! ranges over pixels; this has the effect of `selecting' the colour
where each point is likely to be located. Next, a Gaussian splat
of colour cp is placed into a canvasCp, by convolving the
smoothed target location map with a Gaussian kernelG3� 3 of
colourcp, i.e. Cp = � (x target )jp � G3� 3 � cp. Finally, these can-
vases are composited together with the backgroundbtarget using
a weighted softmax [36] to give the �nal reconstructed image,
which we denote byNPT( x source ; � (x source ); � (x target )) . We
train the model to minimise the mean squared error between

the target image and its reconstruction:

` recon = jjx target � NPT( x source ; � (x source ); � (x target )) jj2:
(1)

Note that this approach differs from [11], which uses
keypoints to select which source and target features are passed
to the decoder. Their approach (i) allows permuting predicted
keypoints without a change in loss, and (ii) assumes constant
background. Hence, it merely segments foreground features
that are suf�cient for the decoder to reconstruct the target (see
Sec. IV-B), but does not localise joints speci�cally.

To ensure regularity, we impose an additional loss requiring
that for each foreground point, at least one of its neighbours
in x source should remain so inx target :

`contiguity = �
X

p

�
max
q6= p

N source
pq N target

pq

�
(2)

loss wherep andq index foreground points, andN source and
N target are matrices indicating which points are neighbours,
i.e. lie within distance� of each other. For details of how
they are calculated from our categorical representation of point
positions, see the supplementary.

B. Predicting joints and their connectivity

The skeleton predictor (x; � (x)) takes as input the image
x concatenated with its foreground points� (x), and yields
connection indicatorsS 2 < P � P between all pairs of points,
i.e. a connectivity matrix whereSij = 1 indicates thei th and
j th points are connected by a link. In practice, we relaxS to
have values in the range[0; 1]. Note that the joint locations
are de�ned implicitly by the foreground points' locations and
the connectivity matrix—joints are simply foreground points
that are connected to some other. This allows our model to
predict a variable number of joints depending on the object.
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