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Abstract—Reasoning about the structure and motion of novel
object classes is a core ability in human cognition, crucial for
manipulating objects and predicting their possible motion. We
present a method that learns to infer the skeleton structure of a
novel articulated object from a single image, in terms of joints and
rigid links connecting them. The model learns without supervision
from a dataset of objects having diverse structures, in different
poses and states of articulation. To achieve this, it is trained to
explain the differences between pairs of images in terms of a
latent skeleton that defines how to transform one into the other.
Experiments on several datasets show that our model predicts
joint locations significantly more accurately than prior works
on unsupervised keypoint discovery; moreover, unlike existing
methods, it can predict varying numbers of joints depending on
the observed object. It also successfully predicts the connections
between joints, even for structures not seen during training.

I. INTRODUCTION

Learning and predicting the structure of articulated objects
from 2D images is a routine task for humans, yet it remains
challenging in computer vision. While there has been great
progress in predicting keypoints for certain object categories
such as the human body [1]–[4], successful methods rely
heavily on large, labeled datasets of objects. They assume these
datasets contain only one object class, meaning the desired set
of keypoints (e.g. knee, elbow, wrist) is known and fixed a
priori. For other forms of articulated object such as animals
and robots, learning object structure remains an open challenge,
due to a lack of annotated datasets, and presence of diverse
skeleton structures.

To address the shortage of annotated data, recent works
have proposed unsupervised object keypoint discovery methods.
These either learn to match object parts that are equivariant to
geometric transformations [5]–[7], or encode and reconstruct
images via structural representations incorporating keypoint
locations and appearance [8]–[11]. However, these methods
do not learn semantically meaningful keypoints—which for an
articulated object typically correspond to joints in its skeleton
structure. To learn those, existing methods must still rely on
either (i) a post-processing step with at least a few human-
annotated keypoints, or (ii) a dataset of unpaired poses to which
model predictions are aligned [12].

In this work, we develop a model for unsupervised keypoint
prediction, that explicitly reasons about skeleton structure, and
places keypoints at joint locations (Sec. III). Thus, the keypoints
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Fig. 1. Our goal is to infer the skeleton structure of an articulated object
from a single image—the number of joints, their positions and connectivity.
Our method learns from a dataset of objects of diverse structures, using only
pairs of images, without manual supervision.

are semantically meaningful. However, this is challenging, as
the skeleton structure of the object shown in an image may be
unknown a priori, and may even vary between instances of
the same class (a possibility not considered in earlier works).
In addition to joint locations, we therefore predict the links
in the skeleton structure itself—i.e. the connectivity between
joints (Fig. 1). This information is also valuable as it allows
estimating the kinematics of an unfamiliar object—and thus
how to manipulate it physically or reason about occluded parts.

Our model is trained without any manual supervision. Instead,
it learns from unannotated pairs of images, where the two
images in each pair depict the same object instance in different
articulation states and/or poses (such pairs may easily be
obtained from videos). The model first extracts a dense set
of points belonging to the foreground object in each image,
by requiring that the points from one image may be used
to reconstruct the object as seen in the other image. From
just one image, it then predicts a common skeleton structure
whose joints are a subset of those foreground points, and whose
links are optimised to best explain the remaining foreground
points in both images—ensuring that every foreground point is
near some link of the skeleton, and conversely that there are
foreground points placed all along each link.

We evaluate the joint locations and skeleton structures
predicted by our model on six diverse datasets (Sec. IV). We
show qualitatively and quantitatively that, in contrast to prior
unsupervised works, the keypoints predicted by our approach



are more physically meaningful and have stable identity across
frames, as they correspond to joints in the skeleton structure.
Moreover, our model successfully predicts structures for unseen
objects, and even for objects having structures that were never
seen during training.

To summarize, our contributions are:
• the first unsupervised method that can infer the skeleton

structure of a novel articulated object from a single image
• the first method for unsupervised keypoint discovery that

explicitly reasons about the skeleton of the object to
improve the semantic meaningfulness of keypoints

• the first such method that predicts a varying number of
keypoints depending on the object shown

• a novel approach to finding a set of foreground points
with temporal correspondences, by physically transporting
foreground pixels from their location in the source to that
in the target frame.

II. RELATED WORK

a) Unsupervised keypoint detection: Automatic learning
of object structure is an extensively studied problem (e.g.
[13]–[15]), especially in facial landmark detection [16], [17]
and human body pose estimation [18]. Recent unsupervised
techniques [19], [20] learn to predict relative transformations
between two images of an object. However, these techniques
do not learn invariant descriptors and object parts explicitly.
[5], [6] learn to explain image parts with descriptors that are
invariant to geometric transformations such as thin-plate splines.
[7] extends [6] with cross-instance generalisation ability by
encouraging transitivity between the embeddings of different
object instances. [8] learns to predict keypoint locations from a
dataset of image pairs, by requiring that one image in a pair can
be reconstructed from the other via a latent representation that
factors the appearance and keypoint locations. [21] improves
[8] by encouraging the keypoints to lie only on the estimated
foreground region. [22] avoids the need for multiple views of
each instance, instead learning from many images of a single
object class, using a clustering-based approach. [12] extends
[8] by estimating a skeleton for each image and associating
the discovered keypoints with its joints. Though related to
ours, this method requires an empirical skeleton prior (skeleton
images obtained from real datasets). In addition, it is limited to
learn one object morphology (e.g. only faces), while ours can
learn from multiple of them. [11] uses a keypoint bottleneck to
model appearance changes between two images by replacing
features corresponding to the keypoints in a source image with
the ones from the target image. Finally [23] and [24] instead
discover keypoints from sets of 3D shapes—respectively point-
clouds and meshes. These afford richer information, but are
much more expensive to obtain than 2D images.

b) Unsupervised part detection: Several other works aim
to discover object parts without supervision, but without linking
those parts into a higher-level structure. [25] learns to predict
part masks from pairs of frames showing the same articulated
instance, by noting constraints on how the shape and appearance
of parts should transform between frames. [26] instead relies on

video input, and learns an explicit part-decomposed appearance
model; it does not support inference on unseen videos. [27]
goes further and estimates a structure matrix describing which
parts move together; however, they only predict one matrix for
an entire dataset (containing just one object class), instead of
predicting structure per-input.

c) Unsupervised structure prediction: Most related to
ours, [28] predicts keypoints using [11], and a matrix indicating
which of these are ‘causally linked’ to infer object dynamics
and the future state. This model associates pairs of parts that
are predictive of each other, hence it does not incorporate any
geometric information like ours. Indeed, the trajectories of
two physically-connected joints are often less correlated than
those of two non-connected joints (e.g. the motion of the right
foot is highly predictive of the left). In addition, it assumes
access to ground-truth actions (e.g. locations and strengths of
applied forces), which convey strong side information about
the keypoint locations, and relies on the keypoints of [11]
which are typically more error-prone. We compare our method
to [28] in Sec. IV.

III. METHOD

Our goal is to learn a function that predicts the skeleton
structure—i.e. joint locations and connectivity—of a novel
articulated object from a single image x. We split this prediction
into two stages. First, a neural network π(x) outputs a dense
set of points covering the foreground object shown in x. Then,
a second neural network ψ(x, π(x)) takes as input the image
and foreground points, and outputs the skeleton structure—with
the predicted joint locations being a subset of the foreground
points. We train this model on a dataset of unannotated image
pairs, each showing an articulated object in two different poses.
For each pair of source and target images, we require that
the foreground points from the source image can reconstruct
the target image using the shape of the target object but the
appearance of source object (Sec. III-A). We simultaneously
require that the skeleton predicted by ψ from the source image
explains the foreground points in both images (Sec. III-B).

A. Predicting foreground points

The point extractor π takes as input a single RGB image
x ∈ ℜH×W×3 of size H ×W .1 It returns the pixel locations
of P points covering the foreground object; the output of π
should be pose- and viewpoint-invariant, i.e. when π is applied
to two images of the same object in different poses, the pth

point still corresponds to the same physical location on the
object (e.g. point p is on the nose in both images). However,
this is not a sparse keypoint representation. We represent the
position of each point π(x)|p ∈ {1, . . . , H}×{1, . . . , W} as
a one-hot categorical variable over all H×W pixels, indicating
the pixel coordinate of the point in the image. Hence, π(x)
outputs a tensor of size P × H × W , with each of the P
slices corresponding to one foreground point, and interpreted
as logits of a single categorical variable over H ×W possible

1We implement π with a U-net architecture [29]; architectural details for
all networks are in the supplementary
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Fig. 2. Our model is trained on pairs of images, source and target. It has three encoder networks: π predicts a list foreground points from each image; ψ
predicts the skeleton structure from the source image, by selecting certain foreground points to use as joints, and specifying which are connected; B predicts
the background from the target image. The model is trained for two objectives. A neural point transporter (NPT) aims to reconstruct the target image (blue
dashed arrow) using the foreground point appearances from the source image, their locations in the target image, and a predicted background. Meanwhile, the
skeleton predicted by ψ must be consistent with the foreground points in both images (red dotted arrows).

spatial coordinates. To allow training by gradient descent, we
relax the categorical variables to continuous Gumbel-Softmax
variables [30], [31]. This representation for point positions is
advantageous over using an xy coordinate (e.g. given by the
expectation of a spatial softmax [32]) used in prior works [8],
[9], [11], [12], [33]–[35]. This is because our approach yields
informative non-zero gradients through every possible location,
not just with respect to the mean location; this discourages
local optima where points become stuck between two possible
locations. In section IV-C, we include an ablation study showing
that using [32] reduces performance significantly.

a) Losses: To train π without supervision, we require
that the point locations in the target image, combined with
the point appearances from the source image, can be used
to accurately reconstruct the target image. Specifically, we
introduce a novel neural point transporter (NPT), which
reconstructs xtarget from xsource by transporting the appear-
ance at each foreground point in the source to its corre-
sponding location in the target, and compositing these over
a background. We first infer the background btarget from
the target image itself using an auxiliary network B, i.e.
btarget = B(xtarget). Then, for each point p, we smooth its
location map π(xsource)|p by convolving with a 3×3 Gaussian
filter to give π̃source

p . Next, we take a weighted average of pixels
in the source image according to the smoothed location map, i.e.
cp =

[∑
ω∈Ω xsource(ω)π̃

source
p (ω)

]
/
∑

ω∈Ω π̃
source
p (ω) where

ω ranges over pixels; this has the effect of ‘selecting’ the colour
where each point is likely to be located. Next, a Gaussian splat
of colour cp is placed into a canvas Cp, by convolving the
smoothed target location map with a Gaussian kernel G3×3 of
colour cp, i.e. Cp = π(xtarget)|p ∗G3×3 · cp. Finally, these can-
vases are composited together with the background btarget using
a weighted softmax [36] to give the final reconstructed image,
which we denote by NPT(xsource, π(xsource), π(xtarget)). We
train the model to minimise the mean squared error between

the target image and its reconstruction:

ℓrecon = ||xtarget −NPT(xsource, π(xsource), π(xtarget))||2.
(1)

Note that this approach differs from [11], which uses
keypoints to select which source and target features are passed
to the decoder. Their approach (i) allows permuting predicted
keypoints without a change in loss, and (ii) assumes constant
background. Hence, it merely segments foreground features
that are sufficient for the decoder to reconstruct the target (see
Sec. IV-B), but does not localise joints specifically.

To ensure regularity, we impose an additional loss requiring
that for each foreground point, at least one of its neighbours
in xsource should remain so in xtarget:

ℓcontiguity = −
∑
p

{
max
q ̸=p

Nsource
pq N target

pq

}
(2)

loss where p and q index foreground points, and Nsource and
N target are matrices indicating which points are neighbours,
i.e. lie within distance β of each other. For details of how
they are calculated from our categorical representation of point
positions, see the supplementary.

B. Predicting joints and their connectivity

The skeleton predictor ψ(x, π(x)) takes as input the image
x concatenated with its foreground points π(x), and yields
connection indicators S ∈ ℜP×P between all pairs of points,
i.e. a connectivity matrix where Sij = 1 indicates the ith and
jth points are connected by a link. In practice, we relax S to
have values in the range [0, 1]. Note that the joint locations
are defined implicitly by the foreground points’ locations and
the connectivity matrix—joints are simply foreground points
that are connected to some other. This allows our model to
predict a variable number of joints depending on the object.



a) Losses: We require that the skeleton Ssource predicted
from the source image be consistent with both source and target
point clouds, π(xsource) and π(xtarget), albeit with different
joint angles in the target image. We impose this through three
loss terms:
• ℓnear encourages all foreground points p to be near some

link in the skeleton. Let df [p||i, j] denote the distance from
p to the nearest location on the line segment joining points
i and j (this line segment will be a link in the skeleton iff
Ssource
ij = 1). Then, we minimise:

ℓnear = −
∑

f∈{source,target}

∑
p

max
ij

{
Ssource
ij e−df [p||i,j]

}
(3)

To ease optimisation, we replace maxij{x} by the relax-
ation argmaxij{x} · softmaxij{x}.

• ℓsparse enforces sparsity of the skeleton by minimising the
number of links and joints:

ℓsparse =

∑
ij

∣∣Ssource
ij

∣∣p1/p

+

(∑
i

[
max

j
Ssource
ij

]p)1/p

(4)
for some constant 0 < p ≤ 1. Here the first term minimises

the number of links, while the second minimises the number
of points with at least one link attached—i.e. the number
of joints.

• ℓuniform discourages links where not every location along
the link has a foreground point nearby:

ℓuniform =
∑

f∈{source,target}

{∑
ij S

source
ij [δfij < α]∑
ij [δ

f
ij < α]

}
(5)

where δfij is the fraction of pixels along the line between
the ith and jth points that are within distance τ of some
foreground point, in the source or target image. For details
of how these matrices are calculated using our categorical
representation of point positions, see the supplementary
material.

C. Training

We define an overall loss by summing those given by equa-
tions (1)–(5), weighting each according to a hyperparameter
(these and other hyperparameters are given in the supplementary
material). The neural networks π, ψ, and B are then trained
to minimise this total loss, using Adam [37] on minibatches
containing 8 pairs of images.

IV. EXPERIMENTS

We evaluate our method on six datasets, on the tasks of skele-
ton prediction (Sec. IV-A) and 2D joint detection (Sec. IV-B),
and demonstrate that it outperforms recent baselines on both.

a) Evaluation protocol: We emphasise that at test time,
our model requires only a single frame as input. However, as
in [11], to evaluate our method thoroughly, we run it on each
frame of video sequences; this allows us to evaluate consistency
of tracking joints over time (Sec. IV-B). In particular, we match

Fig. 3. Examples of keypoints and structure predicted by our model on
Spider (top row), Cartpole, Human3.6M and a joint dataset of Hopper +
Walker + Manipulator + Cheetah (bottom row). For each example we show
the input image on the left, then our model’s predicted skeleton structure and
joint locations.

predicted joints to ground-truth joints based on their trajectories
over the full video. We measure the mean Euclidean distance
between predicted and ground-truth locations, and match them
with the Hungarian algorithm [38]. Also, for each video, we
predict a single connectivity matrix S from one randomly-
selected frame, and treat this as representative of the entire
video. We binarise S to give Sb by thresholding at 0.5. During
training, we randomly sample pairs of frames showing the
same object.

b) Datasets: To evaluate our method on datasets con-
taining objects with various topologies, we use DeepMind
Control Suite [39] to generate 100k episodes of 90 frames
each: 1) Spiders contains spiders with different number of legs
(3 to 8); 2) Cartpoles contains cartpoles different number of
poles (1 to 5); 3) Swimmers contains a snake-like body with
2 to 7 rods; 4) we also create a joint dataset by combining
four other provided datasets (Walker + Hopper + Cheetah
+ Manipulator) containing synthetic animals, robotic arms,
and human body. To demonstrate that our method generalises
to unseen topologies, we generate 5) Spiders 0-Shot where
training set contains spiders with 3, 6, 7 or 8 legs but testing
set contains spiders with 4 or 5 legs. We ensure that all these
datasets exhibit high variability in terms of object pose, size,
colour, and movement. To demonstrate that predicted joints
are temporally consistent, we include significant pose changes
in each sequence. Finally, to show that our method works on
real images, we use 6) Human3.6M [40] which contains 3.6M
frames showing humans performing 17 different activities.
For this dataset only, we follow [9], [10] and remove the
background using the unsupervised method provided with the
dataset. From each dataset, we reserve 60 videos for evaluation.
More details on the data generation, splits, etc., are given in
the supplementary.

A. Evaluating structure

We measure our model’s ability to correctly recover the
skeleton structure of an object from a single image by evaluat-



TABLE I
QUANTITATIVE RESULTS ON SKELETON STRUCTURE PREDICTION.

Ours Li et al. [28]

Acc ↑ Bcc ↑ F1 ↑ Prec ↑ Rec ↑ Acc ↑ Bcc ↑ F1 ↑ Prec ↑ Rec ↑

Spiders 0.67 0.55 0.22 0.16 0.38 0.40 0.51 0.21 0.13 0.66
Cartpoles 0.95 0.94 0.93 0.99 0.87 0.56 0.56 0.47 0.41 0.54
M+W+H+C 0.72 0.58 0.35 0.39 0.32 0.58 0.50 0.26 0.21 0.35
Swimmers 0.89 0.89 0.85 0.89 0.82 0.55 0.50 0.38 0.42 0.36
Human3.6M 0.85 0.58 0.27 0.33 0.23 0.22 0.51 0.21 0.12 0.89
Spiders 0-Shot 0.77 0.62 0.37 0.34 0.40 0.51 0.55 0.34 0.23 0.63

ing whether the predicted connectivity matrix Sb matches the
joint connectivities of the ground-truth skeleton, denoted Sgt.

a) Metrics: For each predicted joint pair i, j, we check
if the predicted connectivity Sb

ij is equal to the ground-truth
connectivity Sgt

kl , where k and l are the ground-truth joints
matched to i and j. Based on this, we report the accuracy
(Acc), balanced accuracy (Bcc), F1 score (F1), precision
(Prec), and Recall (Rec). For all metrics, higher is better. For
all models, we select hyperparameters based on Bcc.

b) Baseline: We compare our approach to the recent
work of [28], which aims to recover causal dynamic structure
without supervision, in terms of a connectivity matrix between
keypoints. We provide it with video data, which it requires at
both train and test time; by contrast we use a single random
frame to test our method. Note that, in addition to videos,
this baseline also requires action data, which is not available
for our (or most other) datasets; we therefore set these to
zero. We tuned their hyperparameters on our data, and trained
until convergence or a maximum of 7 days (compared with a
maximum of 2 days for our model).

c) Results: The quantitative results in Tab. I show that
our method outperforms the baseline on nearly all datasets
and metrics. Our model accurately predicts whether links in
the skeleton should be present particularly well for Cartpoles,
Swimmers, and Human3.6M. We show qualitative results in
Fig. 3; we see that the structure of complex objects such
as spiders can be accurately predicted—links in the skeleton
almost always follow the true legs of the agent. Even for the
more challenging Human3.6M data, performance is reasonable
(in line with the quantitative results), though there are some
spurious joints present. We again emphasise that our method
consistently outperforms [28], in spite of ours seeing only a
single image at test time, whereas they require full videos.
On three datasets, [28] outperforms our method according to
recall (but underperforms on other metrics); this is due to
it predicting very densely-connected skeletons, whereas ours
prefers a more-realistically sparse structure. The most common
failure of our model is modelling two parts with one rigid link
instead of two (e.g. modelling a leg as one long link instead of
two smaller plus a knee). This occurs when source and target
points are explained equally well by both of these cases (e.g.
when the leg is straight in both frames). Note, we analyse in
the supplementary, the importance of the different losses in

our model.
d) Zero-shot generalisation: In contrast to prior work,

our method predicts a variable number of joints—and variable
connectivity among them—depending on the object observed
at test time. We therefore evaluate in an even more challenging
setting, where the object at test time has a skeleton structure
that was never seen during training. Specifically, we train our
model on Spiders with 3, 6, 7 or 8 legs, and test on Spiders
with 4 or 5 legs. The results (bottom row of Tab. I) show that
our method does indeed still accurately predict object structure,
with comparable performance to when all numbers of legs are
seen during training.

B. Evaluating joint locations

Our model implicitly outputs joints as endpoints of the links
that form the skeleton. In this section, we measure how well
the detected joints match the ground-truth, in terms of the
number of joints and their locations, and how accurately they
are tracked over time.

a) Metrics: To evaluate the accuracy with which joints
are detected and localised, we use the metric from [11]. We first
match predicted and ground-truth joints as described above. If
the distance between matched joints is larger than a threshold
ϵ, they are disregarded as a potential match. We then use the
matches to report precision (fraction of predicted joints that
match ground truth), recall (fraction of ground truth joints
matched with predicted joints) and F1, averaged per frame.
To more precisely characterise how joints are tracked, we
introduce two additional metrics. First, we report the average
Euclidean distance between predicted and matched ground-
truth joints, assuming that xy pixel coordinates are normalised
to [−1, 1]. Secondly, to evaluate whether joints switch which
ground-truth joint they are near over the video sequence, we
measure tracking consistency. We define this as the fraction of
frames where a predicted joint is matched to the same ground-
truth when matching is based on distances in one frame, as
when it is based on mean distances over the full video. Finally,
we report the mean absolute difference between predicted and
ground-truth numbers of joints.

b) Baseline: We compare our method to the unsupervised
keypoint discovery method [11], which was shown to outper-
form other recent works on similar datasets to ours [8], [9].
Note that [11] only predicts a fixed number of keypoints; we



TABLE II
QUANTITATIVE RESULTS ON JOINT DETECTION.

Ours Kulkarni et al. [11]

Dist ↓ Constcy ↑ F1 ↑ Prec ↑ Rec ↑ Diff ↓ Dist ↓ Constcy ↑ F1 ↑ Prec ↑ Rec ↑ Diff ↓

Spiders 0.083 0.91 0.87 0.89 0.85 4.3 0.270 0.71 0.33 0.32 0.33 4.4
Cartpoles 0.086 0.92 0.84 0.86 0.82 1.2 0.126 0.70 0.72 0.63 0.85 1.9
M+W+H+C 0.133 1.0 0.89 0.98 0.82 1.5 0.143 0.71 0.91 0.84 0.99 1.5
Swimmers 0.066 0.96 0.90 0.96 0.85 0.9 0.083 0.72 0.87 0.77 0.98 1.4
Human3.6M 0.180 1.0 0.9 0.9 0.9 0.1 0.226 1.0 0.86 0.86 0.86 0.0
Spiders 0-Shot 0.090 0.98 0.70 0.91 0.57 5.4 0.240 0.52 0.47 0.44 0.51 2.5

set this to the true maximum number of keypoints in each
dataset.

c) Results: Our model significantly outperforms the
baseline in terms of F1, distance and consistency on all datasets
(Tab. II). We see that joints predicted by our method are
much closer to assigned ground-truth joints in terms average
per-frame distance than [11]. This is further corroborated
by our higher performance on F1. We attribute the good
performance of our model to the joints having a consistent
physical interpretation, unlike the arbitrary keypoints of [11]
and other earlier works on keypoint discovery. Fig. 4 gives
examples of keypoints predicted by [11]; we see these have
no physical interpretation and do not track the joints over time
(contrast with Fig. 3). Our model also performs performs well
according to the consistency metric (Tab. II), showing that
predicted joints stay near the same ground-truth joint over
time—i.e. the skeleton structure is temporally-consistent. Low
values for [11] indicate that its keypoints often switch which
ground-truth joint they are nearest to over the video sequence.
In contrast to prior work, our method predicts a variable number
of joints depending on the object; it therefore outperforms the
baseline (which had the number fixed to the maximum number
in the dataset) according to the Difference metric, except for
Human3.6M which has the same number of keypoints in all
images. Finally, we see that our method supports generalisation
to skeleton structures with different numbers of joints than any
seen during training. Specifically, our model trained on Spiders
with 3, 6, 7 or 8 legs still accurately predicts joints on Spiders
with 4 or 5 legs (bottom row of Tab. II).

C. Ablation study – Categorical representation of point location

In contrast to prior work [8], [9], [11], [12], [33]–[35],
[41]–[43], we represent the position of each point π(x)|p with
a one-hot categorical variable over H ×W pixel locations.
This representation is theoretically advantageous over an xy
coordinate representation as it receives non-zero gradients
through every possible location (Sec. III-A). In Tab. III, we
present experimental evidence with an ablation study, where our
categorical representation is replaced with an expectation over
xy coordinates given by a spatial softmax [32]. Comparing with
results from our proposed categorical representation in Tab. I &
II, we see that the proposed approach yields significantly higher
performance in nearly all metrics (we highlight those which
are better than in our main model in Tab. I & II). Without

Fig. 4. Qualitative comparison of keypoint tracking over the episode. We
sample two random frames from a video sequence from Spider (initial two
columns) and Walker+Hopper+Cheetah+Manipulator (next two) datasets. We
show keypoints predicted by the baseline of [11] (top row); and structure
and joints predicted by our method (bottom row). Note that in contrast to
the baseline, our model preserves joint identity (point colour) throughout two
frames and predicts a variable number of keypoints. Moreover, our keypoints
reliably lie on the foreground objects.

the novel representation, the model is unable to recover object
structure, and its predicted keypoints are much further away
from ground-truth joints.

TABLE III
ABLATION RESULTS REPLACING OUR NOVEL CATEGORICAL

REPRESENTATION OF POINT POSITION WITH A PRIOR APPROACH [32]

Structure discovery Keypoint discovery

Acc Bcc F1 Prec Rec Dist Constcy F1 Prec Rec Diff

Spiders 0.76 0.51 0.16 0.13 0.19 0.410 0.89 0.15 0.16 0.15 4.7
Cartpoles 0.75 0.72 0.72 0.72 0.72 0.120 1.00 0.67 0.76 0.60 1.3
M+W+H+C 0.53 0.42 0.20 0.19 0.20 0.145 1.00 0.69 0.98 0.53 3.9
Swimmers 0.32 0.50 0.49 0.32 1.00 0.078 1.00 0.53 0.96 0.36 3.3
Human3.6M 0.85 0.52 0.12 0.20 0.09 0.305 0.89 0.54 0.45 0.66 8.0

D. Conclusion

We have introduced a model that tackles the novel task of
predicting both skeleton structure and joint locations from a
single image of an articulated object. We have shown that our
model can be trained without manual supervision, from pairs
of images in different poses. It learns to accurately predict the
number of joints and their connectivity, on a variety of datasets,
including for objects having structures not seen during training.
Finally, it learns to predict joint locations significantly better
than a recent approach to unsupervised keypoint detection, and
to track them over time.
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[4] R. A. Güler, N. Neverova, and I. Kokkinos, “Densepose: Dense human
pose estimation in the wild,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 7297–7306. 1

[5] J. Thewlis, H. Bilen, and A. Vedaldi, “Unsupervised learning of object
landmarks by factorized spatial embeddings,” in IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017. IEEE Computer Society, 2017, pp. 3229–3238. [Online].
Available: https://doi.org/10.1109/ICCV.2017.348 1, 2

[6] ——, “Unsupervised learning of object frames by dense equivariant
image labelling,” in Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp. 844–
855. [Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/
cbcb58ac2e496207586df2854b17995f-Abstract.html 1, 2

[7] J. Thewlis, S. Albanie, H. Bilen, and A. Vedaldi, “Unsupervised learning
of landmarks by descriptor vector exchange,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
6361–6371. 1, 2

[8] T. Jakab, A. Gupta, H. Bilen, and A. Vedaldi, “Unsupervised learning
of object landmarks through conditional image generation,” in Advances
in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December
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SUPPLEMENTARY MATERIAL

V. NEURAL POINT TRANSPORTER VS. [11]

Our neural point transport operation (Section III-A) is
significantly different from Transporter [11], in spite of the
similar name. The essential difference is that our approach
transports the pixel values cp under the location of the pth

predicted point in the source image to the corresponding
location of the same point p in the target image, repeating
this process for every temporally-consistent point. This process
does not use features or pixel values from the target image,
only its point locations. In contrast, [11] combines (i) target
image features under the target keypoints and (ii) source image
features suppressed at keypoint locations. Such ‘transportation’
suffers from significant drawbacks:

1) [11] disregards the identity of points—it simply chooses
whether to take features from source or target based on
whether there is some keypoint at each location. It does
not enforce the fact that exactly the appearance ‘under’
keypoint p in the source image should be moved to the
location of keypoint p in the target image. In contrast, our
method ensures keypoints track locations of consistent
appearance.

2) [11] can learn trivial solutions—e.g. consider a case
when the number of keypoints is large, then [11] can
learn to place ‘keypoints’ covering the entire image, hence
ensuring that only target image features are used in the
reconstruction of the target image. Hence, [11] can learn
to merely segment foreground features that are sufficient
for decoder to reconstruct the target. As we have shown in
experiments, keypoints predicted by [11] are often a large
distance away from the foreground object. By contrast,
our method must learn to explicitly pair target locations
with corresponding source locations.

3) [11] assumes the background is identical in the source
and target images, whereas our NPT does not (it predicts
the completed background from the target image only).

VI. ADDITIONAL DETAILS OF LOSSES

In this section, we give further details of how (i) the
contiguity loss ℓcontiguity (Sec. III-A of the main paper) and
(ii) the uniformity loss ℓuniform (Sec. III-B of the main paper)
are implemented, using our Categorical (relaxed to Gumbel-
Softmax) representation of point locations. Finally, we discuss
loss ℓlength that ensures all links in the skeleton have plausible
lengths.

a) Contiguity loss ℓcontiguity: The contiguity loss defined
in Eq. 2 states that in the target image, each point should still
be near at least one of its neighbours from the source image.
Note that this loss is defined directly on the foreground points,
not the skeleton, and discourages areas of the foreground from
becoming isolated. ℓcontiguity depends (Eq. 2) on N source and
N target, which are square matrices with dimension equal to
the number of foreground points. They indicate which pairs of
points are within some distance β of each other; however, this

is not straightforward to compute due to our spatial Gumbel-
Softmax representation of point locations (Sec. III-A), and
the requirement for differentiability. Recall π(xsource)|p is the
location map for the pth foreground point, i.e. a H×W Gumbel-
Softmax sample, indicating at which location in the H ×W
image the point is located. We apply max-pooling with a kernel
of size β to each π(xsource)|p, giving π̂source

p . Then, for each
pair of foreground points (p, q), we set

N source
pq = max

ω∈Ω

{
π̂source
p (ω) · π̂source

q (ω)
}

(6)

where ω ranges over the H ×W pixel locations. N target is
defined similarly, but using the locations of points in the target
image instead of the source. Thus, two points are regarded as
neighbours, if there exists some location in the image where
the max-pooled (i.e. dilated) location maps for the two points
are both large.

b) Uniformity loss ℓuniform: The uniformity loss defined
in Eq. 5 states that every pixel location along every link in
the skeleton should have some foreground point nearby. Let
Lsource
ij be the line segment joining the ith and jth foreground

points in the source image; this may or may not be a link in the
skeleton, depending on Ssource

ij . Now, ℓuniform depends (Eq. 5)
on δsourceij , which conceptually gives the fraction of pixels
along Lij that are within distance τ of some foreground point.
However, due to our spatial Gumbel-Softmax representation of
point locations, both the start- and end-point of Lij are given
by distributions over all locations. We avoid converting them
to xy coordinates (and thereby introducing local minima in the
loss) as follows. Let π̄source = maxp π̂

source
p , i.e. the maximum

over points, of max-pooled location maps; this is an H ×W
image indicating whether there is any foreground point near
each location. Let M source

ij = exp (−dsource[p||i, j]), c.f. Eq. 3.
Then, δsourceij is calculated using the quantities we have just
defined, as

δsourceij =

∑
ω∈ΩM

source
ij (ω)π̄source(ω)∑

ω∈ΩM
source
ij (ω)

. (7)

We define δtargetij analogously.
c) Length loss ℓlength: The length loss encourages all

links in the skeleton to have plausible lengths in the source
and target images. Imposing this explicitly is computation-
ally intractable for our Gumbel-Softmax representation of
point locations; hence, for this loss only, we resort to a
coordinate representation, similar to [32]. Specifically, we
convert π(xsource)|p to an xy coordinate γsourcep according
to γsourcep =

∑
ω∈Ω ωπ(xsource)|p(ω), and similar for γtargetp .

We then have

ℓlength=
∑

f∈{source,target}
∑

ij Ssource
ij ·{max(0, lmin−l

f
ij

)+max(0, l
f
ij

−lmax)}
(8)

where ij index pairs of foreground points, i.e. possible links,
and lfij = ||γfi − γfj ||.

VII. ABLATION STUDY – STRUCTURE LOSSES

We require the skeleton predictor ψ(x, π(x)) to explain the
foreground object points π(x) of both source and target frames



with a sparse skeleton. The sparsity requirement is achieved
by minimising the number of links and joints using ℓsparse
(Sec. III-A). In addition, we require that each present link
of the skeleton has at least one foreground point near every
pixel along the link using ℓuniform. This discourages links that
explain point cloud well but have gaps along their length with
no foreground points. In this section, we show experimentally
that removing either of those losses decreases the performance
of our model. In particular, we compare our model with all
losses as described in the main text versus ablated models
with either ℓuniform or ℓsparse removed. The results in Table
IV show that our full model outperforms the ablated versions
on nearly all metrics (marked in bold).

S.Acc S.Bcc S.F1 S.Prec S.Rec J.Dist J.Constcy J.F1 J.Prec J.Rec J.Diff

ℓuniform 0.09 0.064 0.066 0.132 -0.026 -0.0054 -0.018 0.104 0.01 0.158 -0.94
ℓsparse 0.13 0.112 0.166 0.06 0.206 -0.0072 0.258 0.152 0.27 -0.05 -6.56

TABLE IV
QUANTITATIVE COMPARISON BETWEEN OUR MODEL VS. OUR MODEL WITH

ABLATED ℓuniform LOSS (ROW 1) OR ABLATED ℓsparse LOSS (ROW 2).
EACH VALUE GIVES THE DIFFERENCE BETWEEN PERFORMANCE WITH OUR

MODEL AND THE ABLATED MODEL, AVERAGED OVER ALL DATASETS.

VIII. IMPLEMENTATION DETAILS

a) Network Architectures: The foreground point predictor
π(x) takes as input a frame x of size 64×64×3 and outputs a
tensor of size P×H×W , with each of the P slices interpreted
as logits of a single Gumbel-Softmax [30], [31] variable over
64 × 64 spatial coordinates. It is implemented as a U-net
architecture [29]: the first layer is a Double-Convolution
(two 3 × 3 Conv-BatchNorm-ReLU [44], [45] layers of
stride 1 and 1-padding). It is followed by 4 down steps
(2×2 max-pooling of stride 2 and Double-Convolution)
and 4 up steps (upsampling by factor of 2 and passing
through Double-Convolution). The final layer is a 1× 1
convolutional layer.

The skeleton predictor ψ(x, π(x)) takes as input the image
x concatenated with its sampled foreground points (repre-
sented as heatmaps, with one channel per point), and yields
connection probabilities S ∈ ℜP×P between all pairs of
points, i.e. a connectivity matrix where Sij = 1 indicates
the ith and jth points are connected by a link. Since the
connectivity matrix is symmetric, the network that parametrises
ψ(x, π(x)) outputs P×(P−1)

2 parameters. The network is
implemented as a convolutional neural network with 8 layers
of Conv-BatchNorm-LeakyReLU. The kernel size was set
to 7 for the first layer, 5 for the second, 1 for the last, and 3
for the remainder. The output of the convolutional network is
passed through layer-normalization and a fully connected layer
outputing P×(P−1)

2 parameters.
The background network B takes a downsampled frame x

of size 16×16×3 as input and infers the background image of
size 64× 64× 3. It uses an encoder-decoder architecture, with
an encoder that infers a background representation vector and
a decoder mapping this to a background image. The encoder is

implemented with 3 Conv-BatchNorm-LeakyReLU layers
followed by a fully-connected network. The generator is
implemented with two layers of upsampling and transpose
convolutions. The limited capacity discourages B from model-
ing the foreground object.

b) Hyperparameters: The max-pooling kernel size used
in calculating ℓcontiguity (Sec. III-A and Sec. VI) was set to
7. The max-pooling kernel size used in calculating ℓuniform
(Sec. III-B and Sec. VI) was set to 5. δfij (the fraction of pixels
along the line between the ith and jth points that are near some
foreground point) used to calculate ℓuniform was set to 0.8. The
reconstruction loss was calculated over a 5-level scale-space
pyramid.

The model is trained with stochastic gradient descent using
Adam [37] with a learning rate of 0.005 and β = (0.9, 0.999).
To increase training stability, gradient clipping is used (both
maximum gradient norm and maximum gradient value were
set to 1) and weights for ℓuniform and ℓsparse were increased
linearly over the first 10K iterations. The optimal weight for
each loss described in Sec. VI was found using a random
search over a grid of parameter values with around 20 to 100
samples per dataset. The selected weights were as follows:

ℓrecon ℓcontiguity ℓnear ℓjoints
sparse ℓlinks

sparse ℓuniform ℓlength

Spiders 10 0.000 10 0.005 1 1 1000
Spiders 0-shot 10 0.000 10 0.1 2000 20 100
M+W+H+C 10 0.001 10 0.01 1000 20 1000
Cartpoles 10 0.001 10 0.1 500 10 100
Swimmers 10 0.001 10 0.1 7000 20 1000
Human3.6M 10 0.001 10 0.0002 7000 16 1000

To evaluate keypoint precision and tracking in Section IV-B,
the following distance thresholds ϵ were chosen:

Dataset Spiders Spiders 0-shot Human3.6M Swimmers M+W+H+C Cartpoles

ϵ 0.20 0.20 0.30 0.20 0.30 0.15

We implemented our model using PyTorch [46]. Each model
instance is trained on a single Nvidia Tesla P100 graphics card.

IX. DATASET GENERATION

To show that our method can generalise to different skeleton
structures, we constructed 5 synthetic datasets. Each contains
objects of various topologies, with varying skeletons and
number of joints. Importantly, our data generation procedure
ensures that models cannot ‘cheat’ by exploiting spatial
correlations of joint positions to achieve good results on
keypoint detection. For example, when ‘foot’ is typically at the
bottom of the image, such as in Human3.6M, then a model’s
ability to consistently track joints is poorly tested, as it can
simply predict the mean location of the foot over the whole
dataset. In contrast, Fig. 5 shows that our data exhibit large
enough pose variation that different limbs may appear in the
same region of the image in different frames, forcing the model
to track them based on the the global structure and appearance.

For each of the synthetic datasets described in the main
text, we use several different object models from DeepMind
Control Suite [39]. To generate one video, we first sample
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Fig. 5. To demonstrate the temporal consistency of predicted joints, we test
our model on a dataset where objects vary significantly in pose over the
episode (turning, spinning, falling) and in topology (different number of legs,
connections). The figure shows frames from two videos for Spiders, at different
time steps (columns). We show input image (1) and its corresponding ground-
truth joints (2) and skeleton (3) in the first three rows; as well as predicted
joints (4) and predicted skeleton (5) in the last two rows. We use consistent
colour of joints for each row—hence, if the colour of joint is preserved in all
columns, the joint identity is preserved over time steps.

an object uniformly at random from the set of object models
for that dataset. We then randomly sample its pose at the
beginning of the episode by drawing a random sample of
joint angles. We generate 90 frames using a random policy,
taking a random action every 5 steps. For Walker + Hopper
+ Cheetah + Manipulator dataset, we ensure that humanoids
and animals do not have consistent pose by using zero-gravity
conditions—i.e. they are as likely to be in upside down or
in horizontal poses as being in a vertical standing pose. This
contrasts with previously used settings, such as in [11], where
datasets contained objects whose joint positions rarely swap
over time. For Spiders, we make the data more challenging
by randomising the colour of limbs. For all datasets, videos
are rendered at 64× 64 resolution. During training, we sample
a pair by selecting two random frames from the episode. For
each dataset, we reserve 60 videos for evaluation.

For Human3.6M, we use the provided foreground masks,
similar to [9], [10]; note that these are computed without
supervision.
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